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Prediction 

Estimate the absolute risk in individual patients of … 
• an outcome’s presence (diagnosis) 
• an outcome’s future occurrence (prognosis) 

 
 
Example 
“What is the 10-year risk of cardiovascular disease in a 
visiting primary care patient?” 
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Prediction models 

 
 

Combine information from multiple predictors 
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Prediction models are abundant 

• > 350 models for cardiovascular disease 
• > 100 models for brain trauma patients 
• > 100 diabetes type 2 models 
• > 100 models for prostate cancer 
• >   60 models for breast cancer prognosis 
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The reality 

Poor understanding of 
• The validity of model predictions in new patients 

• The generalizability of prediction models across different 
settings and populations 

• The comparative performance of prediction models 

• The clinical impact of prediction models 

 
 

“All models are wrong, but some are useful” 
 

         George Box 
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The need for evidence synthesis 
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The need for evidence synthesis 

Synthesis of published prognosis studies may help 
 
• To identify promising markers 

– By summarizing their (incremental) prognostic value 
– By exploring sources of between-study heterogeneity 

• To identify promising prediction models 
– By summarizing their predictive performance 
– By exploring generalizability across different settings and 

populations 
– By evaluating the need for further improvements 

• To improve estimation of prediction models 
– By avoiding overfitting in small samples 
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Summarizing prognosis evidence 
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Summarizing prognosis evidence 
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Formal review steps and tools 
• Defining the review question (PICOTS) 
• Defining the search strategy 
• Quantitative data extraction (*) 
• Quality appraisal (PROBAST) 
• Meta-analysis (*) 
• Investigating heterogeneity 
• Interpretation (GRADE) 
• Reporting (guidelines: REMARK, PRISMA, TRIPOD) 

 
(*) Debray TP et al. A framework for meta-analysis of prediction model studies 
with binary and time-to-event outcomes. Stat Methods Med Res. 
https://doi.org/10.1177/0962280218785504  



Summarizing prognosis evidence 

 
 

@TPA_Debray 

An illustrative example 



An illustrative example 

 
 

@TPA_Debray 

PICOTS 
 
• Population = a general (unselected) population setting 
• Intervention = Framingham Wilson 1998 
• Comparator = Framingham ATP III 2002 
• Outcome = fatal or nonfatal coronary heart disease 
• Timing = 10 year 
• Setting = disease prevention in general population 
 



An illustrative example 
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Search & identification of eligible studies 
 
• Two previously published systematic reviews 
• Search in MEDLINE and Embase 
• Citation search in Scopus and Web of Science 
Search results: 304 eligible papers 

 
Eligible unique validations with information of the original 
model’s predictive performance: 
• Total OE ratio (N = 74) 
• Concordance statistic (N = 77) 



An illustrative example 
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Data extraction 
• Study design, participant enrolment, study dates 
• Population characteristics 
• Sample size 
• Predictors 
• Predicted horizon, predicted outcomes 
• Model updating methods  
• Model performance (before and after updating) 
 
If relevant information was missing, we contacted the 
authors and, if unsuccessful, used previously proposed 
approximations (implemented in R package metamisc) 

 
 
 



An illustrative example 
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Critical appraisal (PROBAST) 
 
Key findings 
• Most validations scored low risk of bias  
• Risk of bias for predictors was often unclear due to poor 

reporting of predictor definitions and measurement 
methods 

• Risk of bias for sample size and participant flow often 
high due to inadequate handling of missing data 
 
 
 



An illustrative example 
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Critical appraisal (PROBAST) 
 



An illustrative example 
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Meta-analysis (Total O:E ratio) 
 

 



An illustrative example 
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Meta-analysis (concordance statistic) 
• Framingham Wilson  

– Men:  0.68 (95% PI: 0.61 to 0.73) 
– Women:  0.71 (95% PI: 0.51 to 0.85) 

• Framingham ATP III 
– Men:  0.64 (95% PI: 0.48 to 0.77) 
– Women: 0.66 (95% PI: 0.63 to 0.69) 

 
 



An illustrative example 
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Meta-analysis (calibration slope) 
• Framingham Wilson  

– Men:  1.01 (95% PI: 0.95 to 1.07) 
– Women:  0.97 (95% PI: -0.06 to 2.00) 

• Framingham ATP III 
– Men:  1.29 (95% PI: 0.14 to 2.45) 
– Women: 0.95 (95% PI: 0.87 to 1.03) 

 
 



An illustrative example 
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Heterogeneity & interpretation 
 
• Small differences in pooled performance  

(except between men and women) 
• Overestimation of CHD risk  

(particularly in EU populations as compared to US) 
• Mis-calibration appears to occur in baseline risk only 
• Discrimination increases as populations become more 

diverse 
 
Conclusion: Framingham models appear adequate for risk 
prediction, but local revisions are necessary. 

 
 

 
 



What next? 
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Following the results of a systematic review & meta-analysis, 
we may decide to: 
 
• Directly implement an existing model 

– Is any mis-calibration acceptable in terms of decision making? 
• Update an existing model (e.g. Framingham Wilson) 

– Which model should be chosen? (e.g. model with best overall 
performance, or model with least heterogeneity in 
performance?) 

• Develop a new model from scratch 
– Ignore prior research & sustain overfitting? 

• Combine and update multiple existing models 
 

 
 

 
 



Aggregation of prediction models 
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Aggregation of prediction models 
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General idea 
 
• Identify promising literature models  

– Systematic review 
– Critical appraisal 

• Collect a small sample of the target population 
– Intended for validation & updating purposes 

• Combine the literature models into a single model 
– The predictor–outcome associations from the original models 

are weighted according to their performance in the validation 
sample  

– The aggregated model is adjusted for the local circumstances. 
 

 
 
 

 
 



Aggregation of prediction models 
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Proposed approach 
 
Stacked regressions 
• Simultaneously updates, weights, and estimates the 

(aggregated) meta-model 
• Can be viewed as a generalization of model updating 
• Can be used to combine models that are poorly reported 
• Effective in small samples 
• Recent extensions to facilitate revision of specific predictors 

 
 

 
 

 
 

 
 



The bigger picture 
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Which prediction 
models are 
promising? 

Systematic review & meta-
analysis of prognosis studies 

Combine and 
tailor them! 

Develop a 
new model 

>= 1 = 0 

Ideally using IPD from multiple 
studies, so we can increase and 

assess generalizability 

Ideally using a small, 
local sample 



Summary points 

 
 

• No need to develop new models 
– Systematic review and meta-analysis may help to establish 

whether existing models are promising 
– Identify, refine and combine promising models  
– Methods, guidance & software widely available 

 
• Meta-analysis of individual participant data 

– Increase sample size and diversity in case-mix 
– Allow investigation of generalizability across different 

settings and populations 
– Research ongoing to address heterogeneity, missing data, 

measurement error, and other challenges. 
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https://cran.r-project.org/package=metamisc
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