Welcome to our research page featuring recent publications in the field of biostatistics and epidemiology! These fields play a crucial role in advancing our understanding of the causes, prevention, and treatment of various health conditions. Our team is dedicated to advancing the field through innovative studies and cutting-edge statistical analyses. On this page, you will find our collection of research publications describing the development of new statistical methods and their application to real-world data. Please feel free to contact us with any questions or comments.
Filter
Topic
Showing 1 of 1 publications
Introduction: Causal methods have been adopted and adapted across health disciplines, particularly for the analysis of single studies. However, the sample sizes necessary to best inform decision-making are often not attainable with single studies, making pooled individual-level data analysis invaluable for public health efforts. Researchers commonly implement causal methods prevailing in their home disciplines, and how these are selected, evaluated, implemented and reported may vary widely. To our knowledge, no article has yet evaluated trends in the implementation and reporting of causal methods in studies leveraging individual-level data pooled from several studies. We undertake this review to uncover patterns in the implementation and reporting of causal methods used across disciplines in research focused on health outcomes. We will investigate variations in methods to infer causality used across disciplines, time and geography and identify gaps in reporting of methods to inform the development of reporting standards and the conversation required to effect change.
Methods and analysis We will search four databases (EBSCO, Embase, PubMed, Web of Science) using a search strategy developed with librarians from three universities (Heidelberg University, Harvard University, and University of California, San Francisco). The search strategy includes terms such as "pool*", "harmoniz*", "cohort*", "observational", variations on "individual-level data". Four reviewers will independently screen articles using Covidence and extract data from included articles. The extracted data will be analysed descriptively in tables and graphically to reveal the pattern in methods implementation and reporting. This protocol has been registered with PROSPERO (CRD42020143148).
Ethics and dissemination No ethical approval was required as only publicly available data were used. The results will be submitted as a manuscript to a peer-reviewed journal, disseminated in conferences if relevant, and published as part of doctoral dissertations in Global Health at the Heidelberg University Hospital.